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Abstract

An experimental study of the ¯uid pumping effect of a clamped-free bar driven at its ®rst resonance frequency is presented. A ¯exible tube is

attached to the bar undergoing oscillatory excitation. The centrifugal force created by the vibration will generate a pressure gradient causing

steady, uni-directional ¯uid ¯ow. This process is extremely attractive for the self-pumping of heat-transport liquids through the heat exchangers in

a torsionally resonant toroidal thermoacoustic refrigerator. In that application, a single motor can be used to provide the resonant excitation of the

acoustic standing wave within the thermoacoustic refrigerator and eliminates the requirement for two additional motors to pump the hot and cold

heat-transport ¯uids. Measurements are found to agree with simple theoretical predictions. # 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Centrifugal force has been used to create a large variety of

pumps with pressure differentials which vary from inches of

water (blowers) to more than 10 000 atmospheres (compres-

sors). For example, when water in a cup is stirred vigorously,

the water constrained by the curvature of the cup will rise

due to centrifugal force [1]. The resulting pressure head

depends upon centrifugal acceleration which is directly

proportional to the square of the tangential velocity and

inversely proportional to the rotational radius. A ¯exible,

corrugated pipe open at both ends can emit sound by holding

one end and swinging the free end at some angular velocity.

This serves as another demonstration of the use of centri-

fugal force to provide centrifugal pumping [2,3]. The tones

generated by the tube are harmonics of its acoustic reso-

nance frequencies. The emission of sound is determined by

periodicity of corrugation and ¯ow velocity which induce

turbulence in the tube. It is not surprising in the acoustical

demonstration that swinging the tube in an oscillatory

manner will also create sound.

A typical centrifugal pump rotates in a single direction.

Flow passes through the impeller, picks up rotational energy

from it, and develops a pressure head. As the dependence of

pressure is quadratic in the rotational velocity, vibratory

excitation will also lead to steady, uni-directional ¯uid ¯ows

as in the case of uni-directional ¯uid pump. Experimental

measurements of a vibrocentrifugal pump which is driven by

a `clamped-free' (clamped and driven at one end and free at

the other) bar undergoing resonant ¯exural vibration will be

reported. Fluid ¯ow is restricted to a ¯exible tube attached

to, or internal to, the oscillating bar. This process is extre-

mely attractive for the self-pumping of heat-transport liquids

through the heat exchangers in a torsionally resonant tor-

oidal thermoacoustic refrigerator [4,5]. In that application, a

single motor can be used to provide both the resonant

excitation of the acoustic standing wave within the thermo-

acoustic refrigerator [6,7] and the heat-transport ¯uid cir-

culation. This eliminates the requirement for two additional

motors to pump the hot and cold heat-transport ¯uids.

2. Theory

The governing equation for thin rod undergoing trans-

verse vibration based on Bernoulli±Euler theory of beams is

well known as [8,9]
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For a homogeneous beam with constant cross section,

assuming harmonic motion, the above equation can be

reduced to
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where �4��!2/EI and � is linear density of the material.

The general solution of Eq. (2) can be expressed as dis-

placement y(x)�A cosh �x�B sinh �x�C cos �x�D sin �x.

The clamped-free boundary conditions prescribe both dis-

placement and its slope to be zero (y�0 and @y/@x�0) at the

clamped end. The moment and shear force are both zero

(@2y/@x2�0 and @3y/@x3�0) at the free end. This results in

the characteristic equation, cosh �l cos �l�1�0, which has

roots of discrete value. The displacement of nth mode at any

given location has the form [10]

yn�x� � �cosh�nxÿ cos�nx�
ÿ cosh�nl� cos�nl

sinh�nl� sin�nl
�sinh�nxÿ sin�nx�: (3)

The natural frequency of the ®rst mode is hence given by

!1 � 3:52=l2
�����������
EI=�

p
.

The aluminum bar used in these experiments is 36 cm

long, 6 cm wide, and 4 mm thick. The resonance frequen-

cies of the ®rst three modes of the bar are computed to be

f1�25.7, f2�160.9, and f3�450.5 (Hz) (Fig. 1). Here only

the ®rst mode is of interest. From the basic centrifugal force

formula, we have df �x� � dm _y�x�2=x, where dm is the mass

within dx at position x. The amplitude of the transverse

velocity at any given location for the ®rst mode is !y1(x).

Therefore, dp=dx � � _y1�x�2=x, and the pressure differential

between the two ends is

�p �
Zl

0

�
�!y1�x��2

x
dx: (4)

To simplify calculation of the centrifugal pressure, the

displacement is expressed as a fourth-order polynomial in

terms of position along the bar as shown in Fig. 2 where it is

compared to the exact solution. Rayleigh's method [11] was

used to compute resonance frequency of the ®rst mode. By

assuming y1(x)�x4�ax3�bx2�cx�d, coef®cients in the

polynomial are determined by the four boundary conditions.

It follows that y1(x)�x4ÿ4lx3�6l2x2. The ®rst resonance

frequency can then be calculated by equating potential

energy with kinetic energy of the transversely vibrating

beam. This approximation enables us to easily calculate the

centrifugal pressure head, �p accurately (!1 � 3:53=l2�����������
EI=�

p
from this approximation). The calculated pressure

differential at both ends is 0:68�1=2�_s2�, where _s � !y1�l�
is tip velocity. �p has been normalized by kinetic energy

density 1=2�_s2. The exact solution using Eq. (3) Mathema-

ticaTM gives �p � 0:65�1=2�_s2�.
The model developed here takes into account dissipation

due to several loss mechanisms and incorporates them into

the Bernoulli equation. For ¯ow in a pipe, the major losses

are shock loss due to abrupt changes in cross-sectional area

and viscosity of the ¯uid. There are also some minor loss

mechanisms, for example, roughness and bending. The

Bernoulli equation in this application can then be expressed

as a sum of pressure heads as

h � v2

2
� k

v2

2
� f

l

d

v2

2
; (5)

where the ®rst term on the right is due to the energy imparted

from transverse oscillation, the second term is shock loss

with the constant k determined by the particular experi-

mental geometry, and the third term is frictional loss. The

friction factor f�64/ReD for laminar ¯ow. When ¯ow

becomes turbulent, f depends on ReD and relative roughness

e/d [12] and can be found on a Moody chart [13].

Fig. 1. First three transverse modes of a clamped-free bar.

Fig. 2. Displacement distribution along the bar. The solid line represents exact solution and dashed line is an approximation using a fourth-order polynomial.
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3. Experiment

In order to test the theoretical predictions, a simple

experimental apparatus was designed and instrumented.

The core of the vibrocentrifugal pump is an aluminum

bar of 36 cm long, 6 cm wide, and 4 mm thick. The bar

is clamped and driven at one end by a BruÈel and Kjñr Type

4813 shaker and free at the other. It is driven at its ®rst

resonant mode as shown in Fig. 5. In addition to preliminary

calibration of sensors, the experiment has two parts. The

®rst deals with ¯ow rate as a dynamic measurement of ¯ow

velocity with respect to pressure head. The second relates

bar tip velocity to static pressure built up in the tube due to

centrifugal acceleration.

3.1. Calibration of sensors

In order to measure the vibrating velocity of the bar, an

accerelerometer is placed at its tip. Four strain gauges,

connected as a Wheatstone bridge, were then used to

measure displacement in order to cross-calibrate and replace

the accelerometer. Static loading measurements were per-

formed to con®rm that the bar's behavior conformed with

expectation. A linear variable differential transformer

(LVDT) was used to measure the end-loaded de¯ection

caused by a known weight W (Fig. 3). Since surface strain

at the clamped end is given [14] as ���/E�6Wl/(bt2E) and

de¯ection as y�ÿWl3/(3EI), one can relate end de¯ection y

directly to strain �. The Young's modulus was found to be

7.06�1010�0.8% (Pa) and agrees with typical values for

aluminum. The moduli of a material (torsional, longitudinal,

and ¯extural) can also be measured accurately using a

resonance technique [15].

3.2. Flow-rate measurement

To check the applicability of Eq. (5) prior to use in the

pump, two ¯exible plastic tubes of 3.25 and 6.5 mm inside

diameters and lengths of 72.5 and 95.0 cm, respectively,

were connected to a water tank. Fluid ¯owing out of the tank

was measured for known pressure heads. The Reynolds

number ranged from ca. 1000 to 4000. Data show that

pressure head has a quadratic dependence on ¯ow velocity,

while the ratio of ¯ow rate to pressure head varied somewhat

from one measurement to another.

The results from typical measurements are shown in

Fig. 4 and are ®tted using Eq. (6) as

dh � 0:06v� 0:45v2 (6)

where v is the averaged ¯ow velocity based on net mass ¯ow

and _m � �Av �kg=s�. The ¯ow is found to be only slightly

laminar and dominated mostly by turbulence at ¯ow rates

typical of our experiment. Dif®culties in making accurate

comparisons to our theory caused by neglecting turbulence

and entrance effects, were overcome by measuring the

centrifugically induced static pressure head.

3.3. Static pressure head measurement

A ¯exible tube was af®xed along the top of the aluminum

bar with its free end vented to atmosphere and its driven end

connected to a water tank, with the water level lower than

the free end by 5 to 10 cm. This pumping device was able to

draw water out of the tank and discharge at the tip of free

end. Tip displacement amplitude for the onset of discharge

at the ®rst mode of vibration is around 1 cm. Higher

accuracy was obtained using a static approach in which

the free end is vented through a capillary tube and the driven

end is terminated by an Endevco Model 8530B pressure

sensor, as shown in Fig. 5. Calibration was validated by

standard laboratory methods. The vibration of the bar gen-

erates centrifugal force and induces a pressure differential

between the free end (higher pressure) and the driven end

(lower pressure). The pressure head is then determined by

the pressure sensor output voltage divided by its sensitivity.

Water and mercury were used as the ¯uid media in these

Fig. 3. Experimental setup for measuring deflection due to a known load using LVDT and strain gauges.
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measurements. Figs. 6 and 7 show typical results from this

static pressure head measurement.

The driving frequencies were ®xed at the ®rst mode which

are 21.0 Hz for water and 19.5 Hz for mercury, respectively.

The measured induced pressure differential �p � k�1=2�_s2�
with k varied from 0.47 to 0.57.

Fig. 4. Flow-rate measurement data with vertical axis plotted in kg/s and horizontal axis as head in m. The points indicate measured data, and the solid line is

a quadratic curve fit.

Fig. 5. Setup for measuring pressure differential built up on the right end

by vibrocentrifugal force. Two of four bonded resistive strain gauges are

shown on the right. Fig. 6. Tip velocity (m/s) versus induced pressure head for water.

Fig. 7. Tip velocity (m/s) versus induced pressure head for mercury.
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4. Results and discussions

Although the ¯ow-rate measurement has a very straight-

forward setup and dramatic results, these measurements

were not well suited to detailed quantitative comparison

with the simple theory. It was found in the ¯ow measure-

ment that Reynolds number typically lies in the turbulent

and transition regions. The lengths of the ¯exible tubes

typical for implementation were not long enough in order to

have fully developed ¯ow. There is also a discontinuity at

the connection of the water reservoir to the tube which

causes loss, as discussed previously. Nevertheless, the result

of pressure head versus velocity is always a parabolic curve

with a coef®cient determined by a particular experimental

geometry.

Since centripetal acceleration is ac�(l�!)2/l, induced

pressure head depends quadratically on the transverse velo-

city of the bar and is inversely proportional to its length. A

simple approximate theory, valid for small de¯ections gives

the ratio of pressure head to kinetic energy density of 0.68

and agrees with our experimental measurements to an

average of 25%. The result is satisfying considering for

measurements taken within quasi-turbulent region. We

expect that a more robust attachment of the ¯exible ¯uid

tube to the vibrating bar might improve the agreement

between theory and experiment.
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Appendix

4.1. Nomenclature

ac centripetal acceleration (m sÿ2)

A cross-sectional area (m2)

b width of bar (m)

d diameter of tubes

E Young's modulus (Pa)

g gravitational acceleration ' 9.8 (m sÿ2)

dh pressure head (m)

I moment of inertia for area (m4)

l length of a material (m)

_m mass flow rate (kg sÿ1)

p acoustic pressure (Pa)

�p pressure drop (Pa)

ReD Reynolds number

s peak vibration amplitude at aluminum bar tip (m)

_s peak transverse velocity amplitude at aluminum bar

tip (m sÿ1)

t thickness of bar (m)

v averaged fluid velocity (m sÿ1)

W weight of load (N)

y transverse bar deflection (m)

_y transverse bar velocity (m sÿ1)

4.2. Greek letters

�n roots of beam equation of mode n

� strain

� oscillatory angle (rad)

� mass density of media (kg mÿ3)

� stress (Pa)

! angular frequency (sÿ1)

� linear mass density (kg mÿ1)
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